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Abstract
We present a theoretical study of the electronic structure of modulated graphene
in the presence of a perpendicular magnetic field. The density of states and the
bandwidth for the Dirac electrons in this system are determined. The appearance
of unusual Weiss oscillations in the bandwidth and density of states is the main
focus of this work.

1. Introduction

There has been considerable interest in understanding the electronic properties of a single layer
of graphene ever since its experimental realization. Experimental and theoretical studies have
shown that the nature of the quasi-particles in these two-dimensional systems is very different
from that of the standard two-dimensional electron gas (2DEG) which has been extensively
studied. Graphene has a honeycomb lattice of carbon atoms. The quasi-particles in graphene
have a band structure in which electron and hole bands touch at two points in the Brillouin
zone. At these Dirac points the quasi-particles obey the massless Dirac equation: they behave
as massless particles with a linear dispersion relation εk = vk (with the characteristic velocity
v � 106 ms−1). This behaviour gives rise to a host of new and unusual phenomena such as
anomalous quantum Hall effects and a π Berry phase [1, 2]. This 2D Dirac-like spectrum
has been confirmed by measurements of de Haas–van Alphen and Shubnikov–de Haas (SdH)
oscillations [3], where magnetic oscillations appear due to the interplay of the Landau levels
with the Fermi energy, and are important tools in the investigation of the Fermi surface and
electron transport. In a standard 2DEG an artificially created periodic potential in the sub-
micron range leads to the appearance of Weiss oscillations in the magnetoresistance. Such
electrical modulation of the 2D system can be achieved by depositing an array of parallel
metallic strips on the surface or through two interfering laser beams [4–6]. Weiss oscillations
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can be explained in terms of the commensurability of the electron cyclotron diameter at the
Fermi energy and the period of the electric modulation. These oscillations were found to be
periodic in the inverse magnetic field [5–7]. It is therefore interesting to study the affect on the
Dirac electrons of electrical modulation of a graphene layer. In this work we study the effects
of modulation on the bandwidth (�) and the density of states (DOS) of the Dirac electrons
in graphene. These quantities are essential prerequisites for understanding properties such as
electron transport, thermodynamic behaviour etc.

In section 2, we present the formulation of the problem. Section 3 contains the calculation
of the density of states whereas in section 4 we discuss the bandwidth for electrically modulated
graphene including an asymptotic and classical description. The conclusions are in section 5.

2. Formulation

We consider two-dimensional Dirac electrons in graphene moving in the x–y-plane. The
magnetic field, B = (0, 0, B), is applied along the z-direction perpendicular to the graphene
plane. This system is subjected to a weak electric modulation along the x-direction. Using the
Landau gauge we write the vector potential as A = (0, Bx, 0). The two-dimensional Dirac-
like Hamiltonian for a single electron in the Landau gauge is (using h̄ = c = 1) [1, 2, 8]

H0 = vσ · (−i∇ + eA), (1)

where σ = {σx, σy} are the Pauli matrices and v is the magnitude of the electron velocity. The
complete Hamiltonian of our system may be written as

H = H0 + U(x), (2)

where H0 is the unmodulated Hamiltonian and U(x) represents the periodic modulation along
the x-direction modelled as

U(x) = V0 cos(K x), (3)

where K = 2π/a, and a and V0 are the period and amplitude of the modulation respectively.
Without modulation the Landau level energies are given by

ε(n) = ωg
√

n, (4)

where ωg = v
√

2eB is the cyclotron frequency of the graphene electrons and n is an integer.
Note that the Landau level spectrum for Dirac electrons is significantly different from that in a
conventional 2DEG where ε(n) = ωc(n + 1

2 ) and ωc = eB/m is the cyclotron frequency.
The eigenfunctions without modulation are given by [8]

�n,ky (r) = eiky y

√
2L y	

(−i
n−1[(x + x0)/	]

n[(x + x0)/	]

)
, (5)

where


n(x) = e−x2/2

√
2nn!√π

Hn(x), (6)

	 = (eB)−1/2 is the magnetic length, x0 = 	2ky, L y is the y-dimension of the graphene layer
and Hn(x) are the Hermite polynomials.

As we are considering weak modulation such that V0 is smaller than the Landau level
separation we can apply standard perturbation theory to determine the first order correction to
the unmodulated energy eigenvalues

�En,ky =
∫ ∞

−∞
dx

∫ L y

0
dy �∗

n,ky
(r)U(x)�n,ky (r) (7)
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with the result [8]

�En,ky = 1
2 V0 cos(K x0)e

−u/2[Ln(u) + Ln−1(u)] (8)

where u = K 2	2/2 and Ln(u) are Laguerre polynomials. Hence the energy eigenvalues in the
presence of modulation are

ε(n, x0) = ε(n) + �En,ky = ωg
√

n + |Fn| cos(K x0) (9)

with |Fn| = 1
2 V0e−u/2[Ln(u) + Ln−1(u)]. We observe that the degeneracy of the Landau

level spectrum of the unmodulated system with respect to ky (and x0) is lifted in the presence
of modulation. The formerly sharp Landau levels broaden into bands whose widths, ∼|Fn|,
oscillate as a function of n since Ln(u) are oscillatory functions of the index n. At this stage
we can compare the energy spectrum of Dirac electrons with that of standard electrons in the
same system. The differences are:

• the standard electron unperturbed energy eigenvalues depend linearly on both the magnetic
field and the quantum number n whereas for Dirac electrons they depends on the square
root of both.

• in graphene we have the average of two successive Laguerre polynomials [Ln(u) +
Ln−1(u)]/2 while for standard electrons we have a single term, Ln(u).

These differences will give different results for the density of states and the band width, as we
show in the next section. Note that for the weak electric modulation case under consideration
the quantum numbers n can be referred to as the magnetic Landau band indices and are
equivalent to the Landau level quantum number n for the unmodulated system. In the presence
of weak electric modulation, the band width of the magnetic Landau bands depends on the index
n. Thus the electric modulation induced broadening of the energy spectrum is non-uniform,
a feature which will be of significance in understanding the behaviour of Dirac electrons in
modulated graphene.

3. The density of states (DOS)

It is well known that in the absence of modulation the DOS consists of a series of delta functions
at energies equal to ε(n). The addition of a weak spatially periodic electric modulation,
however, modifies the formerly delta function like DOS by broadening the singularities at the
energies (ε(n)) into bands. The density of states is given by

D(ε) = 1

A

∑

nky

δ(ε − εn,ky ), (10)

where the sum on n extends over all occupied Landau levels and A is the area of then sample.
By using the energy eigenvalues given in (9), we can express D(ε) as:

D(ε) = 2
1

2πa	2

∑

n

∫ a

0
dx0 δ (ε − εn − |Fn| cos(K x0)) , (11)

where εn = ωg
√

n, and a factor 2 is due to spin degeneracy. Evaluation of the x0-integral in the
above equation yields the zero temperature density of states of the modulated two-dimensional
Dirac electrons:

D(ε) = 1

π2	2

∑

n

1
√

|Fn|2 − (ε − εn)2
�(|Fn| − |ε − εn|), (12)
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Figure 1. The dimensionless density of states, D/D0, in a periodically modulated graphene as a
function of energy (a and b have different energy ranges only, all other parameters are the same) for
fixed value of magnetic field B = 0.35 T.

where �(x) is the Heaviside unit step function. Here we can see that the one-dimensional van
Hove singularities of the inverse square-root type appear at the low and high energy edges of
the broadened Landau bands, forming a double peak like structure.

The zero temperature DOS given by (12) is shown graphically in figure 1 as a function of
energy, using the following parameters [8]: v � 106 ms−1, nD = 3 × 1015 m−2, a = 350 nm,
V0 = 0.35 meV, and kF = (2πnD)1/2 being the Fermi wavenumber of the unmodulated system
in the absence of a magnetic field. The origin of both Weiss and of Shubnikov–de Haas (SdH)
oscillations is immediately apparent. The short period, high amplitude oscillation is the Landau
level structure which gives rise to SdH oscillations whereas the apparent darker longer period
oscillation (actually the minima in the DoS for each Landau level) is associated with the Weiss
oscillations. This is largely a consequence of the oscillatory factor |FN |, which has been shown
to exhibit commensurability oscillations. Our basic density of states spectrum is exactly the
same as shown by others [9] without modulation, as is the Weiss period, albeit with an extra
modulation.
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Figure 2. Bandwidth due to periodic electric modulation 2D graphene as a function of magnetic
field. The dotted line is the asymptotic behaviour and solid line represents the exact behaviour of
the width.

4. The bandwidth (�)

To better appreciate the modulation of the amplitude of Weiss oscillations we plot the
bandwidth as a function of the magnetic field in figure 2. The width of the nth Landau level is
given as

� = 2 |FN | = V0 exp− u
2 |Ln(u) + Ln−1(u)| . (13)

This is clearly different from the standard electron result [4–6]. The bandwidth is plotted for
n = nF where nF = E2

F/ω
2
g is the Landau level index at the Fermi energy. Contrast this with

nF = EF/ωc − 1
2 and ωc = eB/m for a standard 2DEG. For the low magnetic fields under

consideration, the graphene results for Dirac electrons are the same in phase and amplitude
as those for standard electrons. Moreover, we have found the maxima and minima of the
bandwidth at the same points as for the case of standard electrons [4, 7].

4.1. Asymptotic expression

An asymptotic expression for the bandwidth can be obtained by using the following expression
for the Laguerre polynomials in the limit of large n as

e−u/2 Ln(u) → (
π2nu

)−1/4
cos

(
2(nu)1/2 − π

4

)
. (14)

Substituting the asymptotic expression given by (14) into (13) yields the asymptotic expression
for bandwidth

� = V0
(
π2nu

)−1/4
cos

(
1
2 (u/n)1/2

)
cos

(
2(nu)1/2 − π

4

)
(15)

= V0

(
a

π2 Rg

) 1
2

cos

(
π Rg

2an

)
cos

(
2π Rg

a
− π

4

)
, (16)

where we have rewritten (15) containing u = K 2	2/2 in terms of the ratio of the semi-classical
orbital radius Rg and the modulation period a. This expression can be easily understood by
analogy with the beating of 2 oscillators of similar frequencies: the first cosine term is the
amplitude of the beat. This extra modulation of the bandwidth is the most significant difference
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between the DOS of a normal 2DEG and graphene. Note that for large n it approaches unity as
(u/n)−1.

For large n the level spacing goes as ωg(n1/2 − (n − 1)1/2) → ωg
1
2 n−1/2 and the width

goes as (π2nu)−1/4, apart from the modulation. There is therefore a value of n at which the
width becomes equal to the spacing and the perturbation theory is no longer valid. This occurs
when

nmax = 1

16
π2uω4

g = π4

2a2V 4
0

v4eB. (17)

For a fixed electron density this suggests a minimum value for the magnetic field B below
which it is necessary to carry out a more sophisticated analysis. Note that this argument also
applies to any other calculation [8] which treats the modulation as a perturbation.

4.2. Classical description

We now give a classical explanation of the asymptotic expression of bandwidth obtained in (16)
which is essentially a large n expression. The classical equations of motion along the x and y
directions are

x(t) = x0 + Rg sin(ωgt + ϕ) (18a)

y(t) = y0 + Rg cos(ωgt + ϕ) (18b)

respectively, where Rg is the radius of the orbit, x0 and y0 are the centre coordinates and ϕ is
phase factor. Note that this approach is valid for both graphene and parabolic systems apart
from the fact that the orbital radius Rg scales as EF in the graphene case but as E1/2

F otherwise.
Without loss of generality we may take ϕ = 0. Thus the increase in the average energy of the
cyclotron motion due to the electric modulation is evaluated as

�E(x0) = 1

t0

∫ +t0/2

−t0/2
V0 cos(K x(t)) dt (19)

where t0 is the period of the orbit. This result is valid to the same order as (7). Substituting x(t)
yields

�E(x0) = V0 J0(K Rg) cos(K x0) (20)

with J0(z) the Bessel function of zero order. For 2π Rg > a, one can replace the Bessel function
J0 by a cosine function as

J0

(
2π Rg

a

)
�

(
a

π2 Rg

) 1
2

cos

(
2π Rg

a
− π

4

)
(21)

with the result

�E(x0) = V0

(
a

π2 Rg

) 1
2

cos

(
2π Rg

a
− π

4

)
, (22)

which is almost the same as obtained in (16) in the limit of large n. The significant difference
between (16) and (22) is the extra cosine factor which has its origin in the mixing between
consecutive Landau levels, or Laguerre functions, which is something with no classical
equivalent. This reveals itself in (16) in that it has not been possible to rewrite (15) in terms of
purely classical quantities: there is a residual n in the extra factor.
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5. Conclusions

In this work we have analysed the band spectrum of graphene with a magnetic field
perpendicular to the graphene layer and a unidirectional electric modulation. We have
determined the density of electronic states and the bandwidth of each level. We have
also considered the asymptotic expression for the bandwidth and its relation to a classical
description and have noted a quantum correction to the classical behaviour. To highlight the
effects of modulation on the density of states and bandwidth, we have plotted these quantities
for experimentally relevant parameters.
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